Institute for Transport Studies

Lessons from empirical studies on incentive regulation

Second economic conference of the French railway regulatory body

Dr Andrew Smith
Institute for Transport Studies, University of Leeds

May 26th 2014 - Paris

Agenda

- Top-down international benchmarking using econometric methods:
 - National data (UIC LICB data)
 - Regional international data (collected by / through ORR)
- Lessons / issues / future challenges
- Conclusions

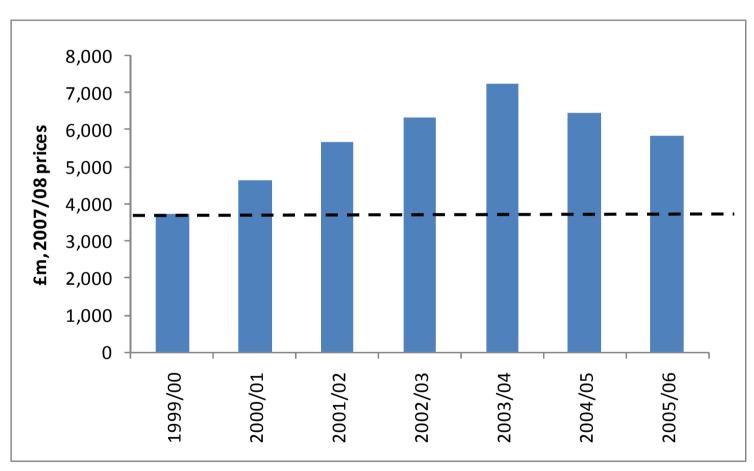
Efficiency assessment

- You don't know efficient level of costs
- How can you find out?
 - > Trends in economy-wide productivity
 - > Historic trends within the company
 - ➤ Other utilities (unit cost trends)
 - > Other regulated firms in the same industry
 - > International benchmarking
 - ➤ Internal benchmarks within the company
 - Bottom-up reviews (consultant; company)

Trend based comparisons

Absolute efficiency comparisons

The background



• Re-wind to 2005 – what was the situation facing ORR?

Rail infrastructure costs in Britain

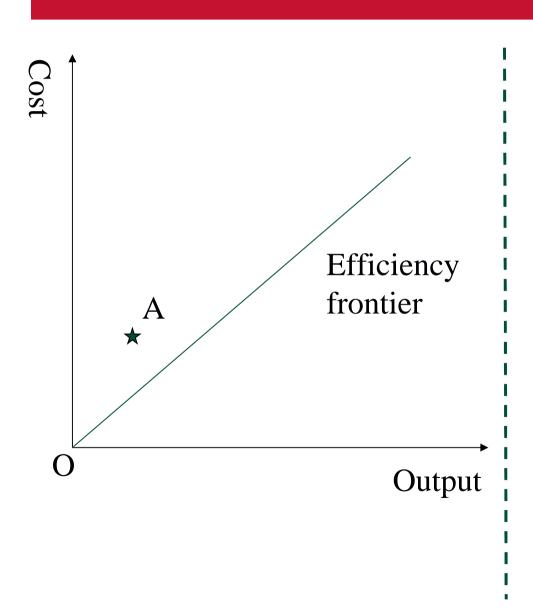
- Cost per train-km increase of 87% by the peak in 2003/04
- Costs still projected to be high at end of regulatory control period

The background

- Re-wind to 2005 what was the situation facing ORR?
- Benchmarking done bottom-up studies; internal benchmarking
- No top-down benchmarking based on external data
- Of course, lack of external domestic comparators
- International benchmarking became top of the agenda

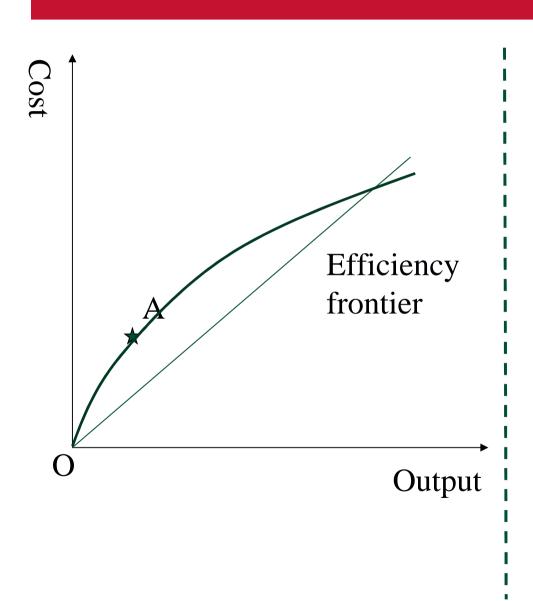
Two suggested approaches

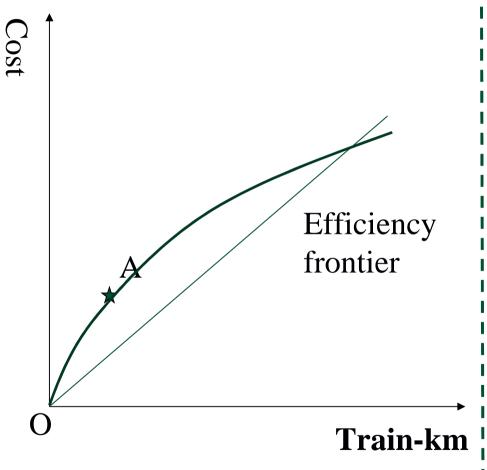
International Benchmarking: UIC National Level Data

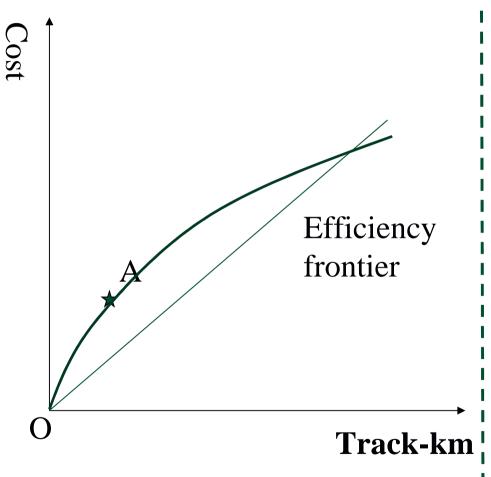

- Ready-to-go dataset
- 13 countries, 11 years
- Maintenance and renewal costs

"Sub-company" International Benchmarking

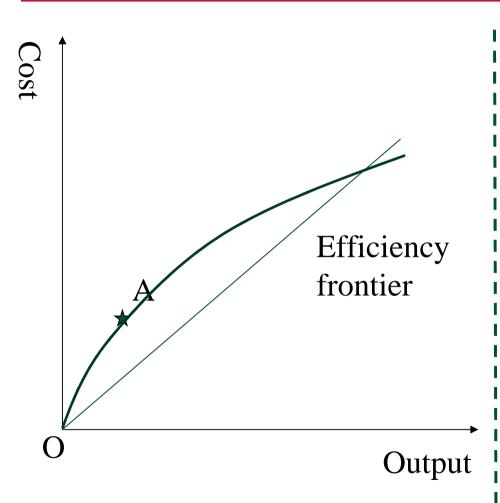
- New data collection by ITS/ORR
- Smaller number of countries and panel length
- Sample size expanded by utilising sub-company data within each country
- Maintenance and renewal costs







- Allow flexibility on the shape of the cost-output relationship (e.g. allow economies of scale)
- Allow multiple outputs / other cost drivers (e.g. train and track-km)



- Allow flexibility on the shape of the cost-output relationship (e.g. allow economies of scale)
- Allow multiple outputs / other cost drivers (e.g. train and track-km)

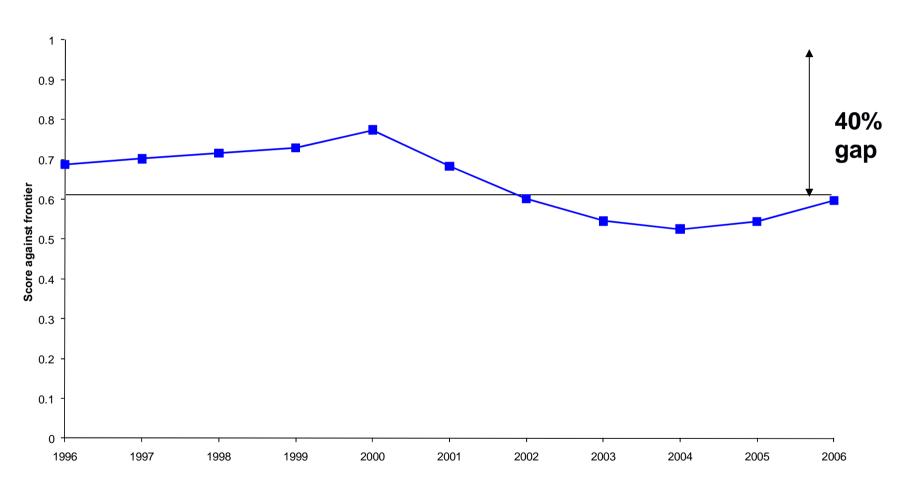
- Allow flexibility on the shape of the cost-output relationship (e.g. allow economies of scale)
- Allow multiple outputs / other cost drivers (e.g. train and track-km)
- So we can explain costs in terms of a set of explanatory factors, e.g.
 - Network size; traffic density and type; other (e.g. electrification; multiple track); potentially, others...
- Having accounted for these factors, and random noise, produce an overall measure of efficiency

International benchmarking study: national data – frontier parameters

Preferred model		Comparator model		Comparator model		
Dependent variable:		Dependent variable:		Dependent variable:		
Total costs (steady-state adjusted)		Total costs (unadjusted)		Maintenance costs		
	Coeff.		Coeff.			Coeff.
Frontier parameters						_
CONSTANT	6 2453 ***	CONSTANT	6.2382	***	CONSTANT	5.4770 ***
ROUTE	1.0743 ***	ROUTE	1.0913	***	ROUTE	0.8430 ***
PASSDR	0.3345 ***	PASSDR	0.3115	***	PASSDR	0.1362 **
FRDR	0.1792 ***	FRDR	0.1472	***	FRDR	0.1567 ***
SING	-0.9181 ***	SING	-0.9681	***	SING	-0.7146 ***
ELEC	-0.0370	ELEC	-0.0690		ELEC	0.0733
TIME	0.0556 ***	TIME	0.0561	***	TIME	0.0469 ***
TIME2	-0.0048 ***	TIME2	-0.0048	***	TIME2	-0.0027 **
Efficiency parameters ¹						
λ	4.0541 ***	λ	4.1810		ĺ	3.6678 ***
$\sigma_{_{u}}$	0.4560 ***	$\sigma_{_{u}}$	0.4694	***		0.3374 ***
$\eta_{_{R1}}$	0.0585	$oldsymbol{\eta}_{{\scriptscriptstyle R}1}$	-4.5467		$oldsymbol{\eta}_{{\scriptscriptstyle R}1}$	0.1634 **
$oldsymbol{\eta}_{N1}$	0.2252	$oldsymbol{\eta}_{N1}$	0.2031	**	$oldsymbol{\eta}_{N1}$	0.2689 **
$\eta_{_{N2}}$	-0.0570 **	$\eta_{_{N2}}$	-0.0513	**	${oldsymbol{\eta}}_{N2}$	-0.0520 ***

^{*** (**, *)} indicates parameter significance at the 1% (5%, 10%) level

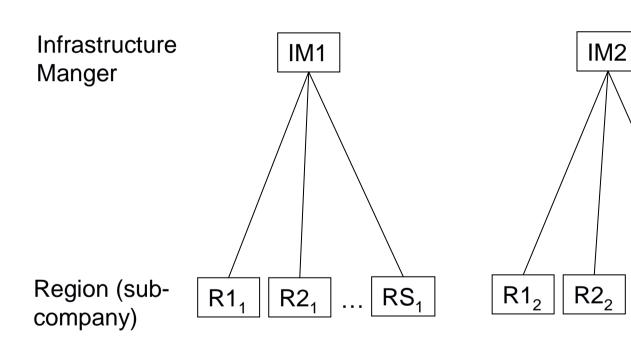
• Source: Smith (2012)

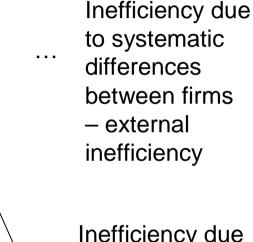


¹ Other firm specific η parameters are included in the model but not shown for confidentiality reasons. $\lambda = \sigma_u/\sigma_v$

Efficiency estimates for Network Rail (PR08)

Profile of Network Rail Efficiency Scores: Flexible Cuesta00 Model




Implies a gap against the frontier of 40% in 2006

Dual Level Inefficiency Model

 RS_2

Inefficiency due variation in performance at regional level – internal inefficiency

Source: Smith and Wheat (2012)

Dataset of infrastructure managers, supplemented by regional / business unit data for each IM

Dataset of infrastructure managers, supplemented by regional / business unit data for each IM

Investigate efficiency differences between countries as well as within countries in the same model

Dataset of infrastructure managers, supplemented by regional / business unit data for each IM

Investigate efficiency differences between countries as well as within countries in the same model

Company	Internal Efficiency Score	External Efficiency Score	
Company 1	0.88	0.92	
	/	/	

Illustrative outputs only here

Could reduce costs by 12% if replicated its own best practice consistently across the network Could reduce costs by another 8% if the company matched international best practice

Dataset of infrastructure managers, supplemented by regional / business unit data for each IM

Investigate efficiency differences between countries as well as within countries in the same model

Company	Internal Efficiency Score	External Efficiency Score	
Company 1	0.88	0.92	
	/	/	

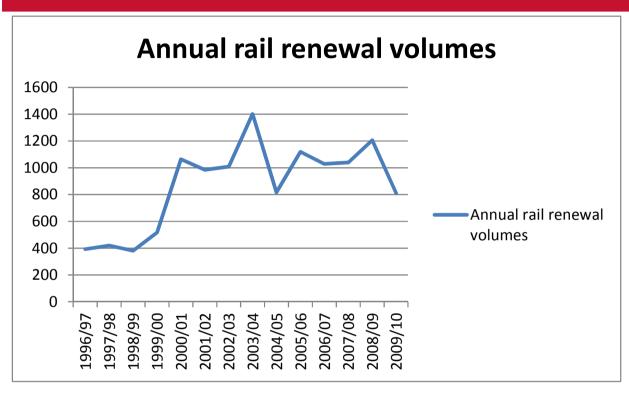
Illustrative outputs only here

Could reduce costs by 12% if replicated its own best practice consistently across the network Could reduce costs by another 8% if the company matched international best practice

Challenges

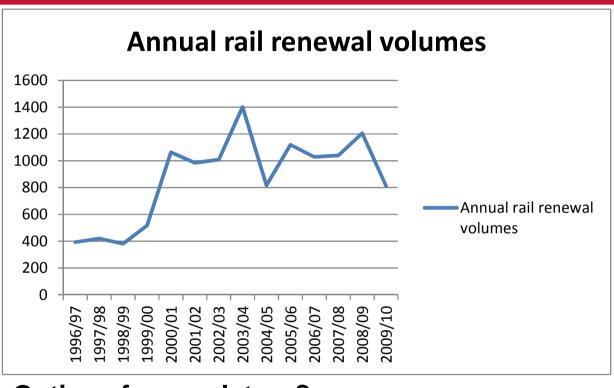
- Data quality / number of data points?
- How to deal with lumpy / cyclical capital costs?
- Modelling fundamental differences in characteristics and quality of railways
- Understanding uncertainty in efficiency modelling?

Data issues



- Regulators face small number of firms (N) usually
- Can be expanded by having several years (T): N*T data points
- Or if have regional data as well: N*T*S
- Quality and consistency of data is key (over time; between firms) – some issues found with LICB data though still used by ORR
- Time consuming to collect your own data set requires commitment over many years from the industry

Modelling capital costs

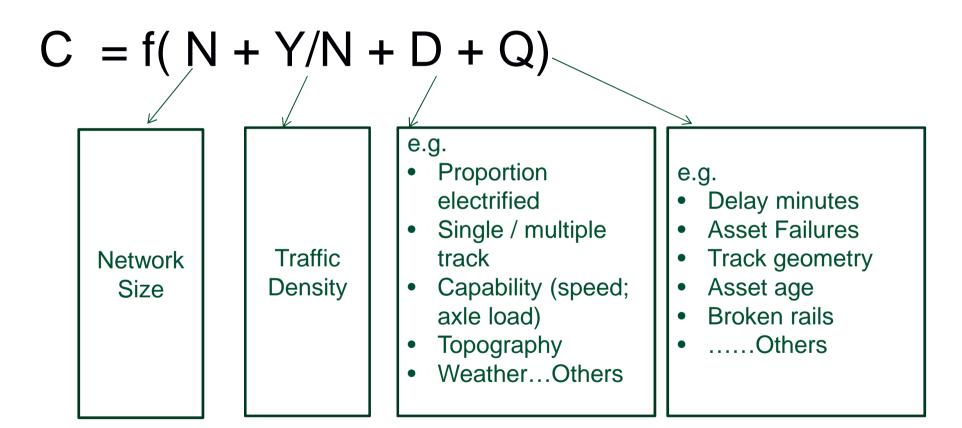


Intermediate versus final outputs?

Modelling capital costs

Intermediate versus final outputs?

Options for regulators?

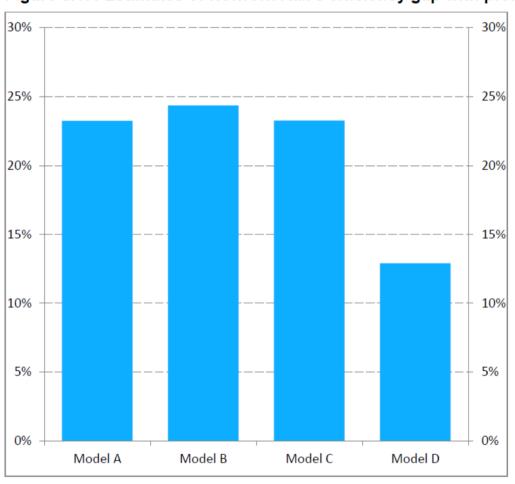

- Steady-state adjustments
- Averaging over time
- Depreciation measures
- Use of quality measures in cost function

Modelling differences in characteristics and quality

Simplified representation:

Can be modelled: ideally with data but for some aspects **even without!** Some challenges though...

Understanding uncertainty



- Sources of uncertainty in efficiency models?
- Point estimates of inefficiency are used intervals rarely computed (this is true of the academic literature as well)
- Two sources of uncertainty in stochastic frontier models:
 - Splitting the residual into random noise and inefficiency
 - Uncertainty about the parameters estimated (e.g. the coefficient on track-km)
- Wheat, Greene and Smith (2013):
 - Developed method to capture both aspects
 - Intervals wider when take account of parameter uncertainty

Regulatory approaches to uncertainty

Figure 8.17: Estimates of Network Rail's efficiency gap with preferred models

- Range 13-24%
- Ignoring the extremes would suggest a gap of 23% (ORR)
- As an aside: overall assessment based mainly on bottom up studies:
 - 16% for maintenance
 - 20% for renewals

Source: Office of Rail Regulation (2013)

Concluding remarks

- International benchmarking is key for rail infrastructure
- Main challenge for top-down benchmarking is data:
 - Number of data points (companies; time; regions)
 - Comparability of data over time and between countries
 - Needs to incorporate quality and other factors in the model
- Collecting good quality data takes time and commitment ideally economic regulators / Ministries need to co-ordinate
- Other wider challenges:
 - Dealing with capital and uncertainty in analyses
 - Value and cost of resilience (e.g. to climate change)

- Perhaps the main challenge for economic regulation of infrastructure is changing?
 - Value and cost of resilience (e.g. to climate change)

Thank you for your attention

Dr Andrew Smith

Contact details

Dr Andrew Smith

Institute for Transport Studies (ITS) and Leeds University Business School

Tel (direct): + 44 (0) 113 34 36654

Email: a.s.j.smith@its.leeds.ac.uk

Web site: www.its.leeds.ac.uk

References

- Smith, A.S.J. and Wheat, P.E. (2012), 'Estimation of Cost Inefficiency in Panel Data Models with Firm Specific and Sub-Company Specific Effects, Journal of Productivity Analysis, vol. 37, pp. 27-40.
- Smith, A.S.J (2012), 'The application of stochastic frontier panel models in economic regulation: Experience from the European rail sector', Transportation Research Part E, 48, pp. 503–515.
- Wheat, P.E., Greene, W, and Smith, A.S.J. (2013),
 Understanding prediction intervals for firm specific inefficiency scores from parametric Stochastic Frontier Models. Journal of Productivity Analysis (published online 10th May 2013).